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Abstract. Machine Learning (ML) model understanding and interpre-
tation is an essential component of several applications in different do-
mains. Several explanation techniques have been developed in order to
provide insights about decisions of complex ML models. One of the most
common explainability methods, Feature Attribution, assigns an impor-
tance score to each input feature that denotes its contribution (rela-
tive significance) to the complex (black-box) ML model’s decision. Such
scores can be obtained through another model that acts as a surrogate,
e.g., a linear one, which is trained after the black-box model so as to
approximate its predictions. In this paper, we propose a training proce-
dure based on Multi-Task Learning (MTL), where we concurrently train
a black-box neural network and a surrogate linear model whose coeffi-
cients can then be used as feature significance scores. The two models
exchange information through their predictions via the optimization ob-
jective which is a convex combination of a predictive loss function for
the black-box model and of an explainability metric which aims to keep
the predictions of the two models close together. Our method manages
to make the surrogate model achieve a more accurate approximation of
the black-box one, compared to the baseline of separately training the
black-box and surrogate models, and therefore improves the quality of
produced explanations, both global and local ones. We also achieve a
good trade-off between predictive performance and explainability with
minimal to negligible accuracy decrease. This enables black-box models
acquired from the MTL training procedure to be used instead of normally
trained models whilst being more interpretable.

Keywords: Multi-Task Leaning - Explainable Artificial Intelligence -
Feature Attribution methods

1 Introduction

Contemporary, complex Deep Neural Networks (DNNs) are increasingly used in
order to assist the decision-making process. Despite their impressive predictive
abilities, these networks provide a very limited understanding of the reasoning
behind their decisions [15]. In domains with high-stakes applications such as
law, finance and healthcare, model understanding and therefore interpretation
is essential so that the model’s predictions can be trusted [15]. Interpretability
of ML algorithms has thus become a pressing issue, and the field of eXplainable
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- or Interpretable - Artificial Intelligence (XAI) has emerged and constitutes an
important component of Trustworthy Al

XAI methods can be arranged to several categories according to different cri-
teria. The most apparent distinction is the one of ‘transparent’ versus ‘opaque’
models. The former category concerns models like Linear/Logistic Regression
and Decision Trees whose structure is simple, and their decision-making process
is understandable by humans. Unfortunately, the simplicity of these models of-
ten comes with an unsatisfactory performance in real-world applications. This
caveat is known as the accuracy-interpretability trade-off. XAI aims to fill this
gap by providing explainability for ‘opaque’ models such as Neural Networks
and Random Forests which require the development of separate specialized al-
gorithms in order to render their predictions interpretable |15]. Usually, these
algorithms make use of the predictions produced by the model after its training,
and are referred to as post-hoc explainability methods.

Post-hoc methods can be further categorized into global and local methods.
The former aim at explaining the general machinery of the ML model, by de-
scribing its average behavior over the entire dataset [5], while local methods
focus on explaining predictions for individual data instances [5|. Another cate-
gorization is based on whether the algorithm is model-agnostic (i.e., it does not
require access to the model architecture) or model-specific.

One well-known class of explainability algorithms are the Feature Attribu-
tion (FA) methods [6] which rely on a score that captures how much the input
features contribute to the model’s output. FA methods can be used in both
global and local settings, as well as in model-specific |2| and model-agnostic [6]
contexts. On the other hand, the class of counterfactual explanations [7] con-
cerns local model-agnostic methods that describe the smallest changes to the
feature values that change the output of the prediction for a given instance,
while decision rule-based explanations are simple IF-THEN natural language
hypothetical statements, consisting of a condition which contains one or more
input features, and a corresponding prediction based on the values of the features
involved in the condition [5].

Real-world problems are multi-objective ones, which means that ML train-
ing should address multiple tasks simultaneously, possibly belonging to different
data modalities. For example, an autonomous vehicle should be able to segment
the lane markings, detect humans, locate road signs, and identify their mean-
ing |21]. In the medical sector, prediction accuracy and prediction explainability
are simultaneously required, e.g., when a patient should be informed about po-
tential side-effect risks for a particular tretment plan. Such problems motivate
the development of Deep Learning models that, given an input, can infer several
desired task outputs |21]. This kind of models can be trained using the Multi-
Task Learning (MTL) paradigm that permits multiple tasks to be concurrently
learned by a single model, enabling the different tasks to share potential common
underlying information, and removing the need for training different models for
each task. In the case of XAl a way to use MTL is to think of prediction and
explainability as two distinct tasks, and to simultaneously solve for these tasks
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in order to allow information exchange between the two tasks and to produce
more specific and accurate explanations for the predictions.

In this work, we utilize the MTL paradigm, which has recently been used in
the field of XAT [8,124,/37], in order to develop a framework that concurrently
solves a ML prediction task and an explainability task. We focus on surrogate
models and employ them to produce FA explanations. We aim at finding a black-
box neural network model f along with a surrogate approximation model g, by
forcing the former to take into account, during training, how well it is approxi-
mated by the latter. To that end, we optimize a loss function that includes a term
for predictive training loss and an explainability-based metric. For the latter, we
use a known explainability metric such as fidelity, which measures the difference
between the predictions of g and f. This component aims to improve f’s approx-
imation through g and to enhance the quality of post-hoc explanations of the
black-box model. Furthermore, the combined objective acts as the information-
sharing ‘channel’ between the two models in the course of back-propagation [18|
during the joint training. In another point of view, g could be considered as an
explainability-regularizing model that constrains the values of f’s predictions to
being similar to those of the interpretable model g. In order to demonstrate the
concept of our approach, we choose g to be a parameterized linear model which
can be trained along with the black-box, but other choices are possible as well.
Using such linear models, feature importance explanations for the predictions of
f can be acquired through the coefficients of g [5].

We experiment with a variety of regression and binary classification tasks,
where we compare models trained with and without MTL. We show that, our
approach that uses MTL to concurrently train f and g, results in a more accurate
approximation of the black-box by the surrogate linear model, compared to the
standard practice where the two models are trained sequentially and separately.
Therefore, the global explanation’s fidelity is very much improved and in addi-
tion, only a minimal drop in the predictive performance is observed as a trade-off.
Furthermore, we show that the same black-box model can be more accurately
approximated by local linear explainers (like Local Interpretable Model-Agnostic
Explanations (LIME) [6]), thus resulting on a lower-fidelity local explanation.

2 Related Work

2.1 Feature Attribution (FA) methods for explainability

FA algorithms are most commonly used as local explainers and assign importance
scores to how much a given input feature contributes to the model’s prediction
result for a single instance of interest. Much work has been done on model-
specific techniques that are gradient-based and work for DNNs by computing
the significance of input features based on the gradient values of the model’s
parameters |2,/25]. Another line of research works create a local neighborhood
around the instance of interest x based on perturbations of x’s feature values and
measure the change in the model’s output in order to calculate the significance
of each feature [6,[29,[35], based on a surrogate model. One of the most popular



4 F. Charalampakos et al.

FA explanation systems, LIME [6], results to a local surrogate model-based ex-
planation by optimizing the following objective, given the instance of interest x
and a trained black-box model f:

e(x,f) =argmin | Y wy (f(x) - g(x')* + 2(g) (1)

IS x' €Ny,

where Ny is the neighborhood around x, consisting of synthetic perturbations of
x. The class of surrogate models is denoted by G (e.g., linear models or decision
trees), and {2(g) is a measure of complexity that encourages desirable properties
of g such as sparsity, i.e., using a small number of features |6]. LIME also weighs
each neighbor of x to denote its importance, using a proximity measure (e.g.,
lo-distance from x) and solves a weighted linear regression objective, using a
weight vector wy. The form of the resulting explanation e(x, f) depends on G.
For instance, if G includes all possible linear functions, then e(x, f) will consist
of the coefficients of the learned linear function g, while in the case of decision
trees, e(x, f) will consist of decision rules based on the trained tree.

In addition to local explainability, FA methods have also been used for
global explainability through global surrogate models which aim to approxi-
mate (mimic) the predictions of the underlying black-box model [5,/10]. Global
surrogate models are similar to local surrogate models, except that they are
trained by using the whole dataset and not just a generated neighborhood of
a specific instance x. The most common way to learn a global surrogate model
is to train it on the predictions {x;, f(x;)}X; of the black-box model, where
x;, f(x;) respectively are the i-th input training feature vector and the corre-
sponding black-box model’s output. This is also the baseline that we use in our
experiments for global explainability.

2.2 Multi-Task Learning

MTL has been extensively studied for training a model on multiple tasks at
the same time. This formulation can result in both improved training efficiency
and better model performance for each task [14]. The most widely used multi-
task learning architecture comprises a shared-parameter model structure, where
the first (representation learning) layers are shared across tasks |21 and N task-
specific parallel heads are added on top, one for each task. This approach is called
a hard parameter-sharing one, where essentially the parameters are divided into
shared and task-specific [21]. In an alternative approach, the soft parameter-
sharing one, there are no shared layers, and each task is assigned its own set of
parameters, a subset of weights of the DNN corresponds to a certain task. In
addition, a mechanism is employed to allow information flow among tasks (i.e.,
soft sharing) [21,122]. For example, individual (task) modules could exchange
information by sharing a segment of their learned latent features (also see Fig.|1)).
Clearly, the soft parameter-sharing approach requires more training time and
computational resources due to the larger number of task-specific parameters.
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(a) Hard parameter sharing (b) Soft parameter sharing

Fig. 1. Two widely used MTL architectures. Each box represents a layer. In (a), the
hard parameter-sharing approach is depicted. Grey boxes denote shared layers while
colored ones denote task-specific heads. In (b), the soft parameter-sharing approach
is shown with no shared layers. Three dedicated subsets of the model’s parameters
correspond to the three different tasks. Figure is taken from [21].

However, it can prove more useful in settings where the tasks at hand are not
so closely related.

In this work, a soft sharing-based approach is utilized, where the surrogate
model g does not share parameters with the black-box f in order to preserve
the former model’s transparency (by keeping its linear structure), and the two
models exchange information only through their respective predictions which we
aim to make as similar as possible. In other words, we treat the black-box model
f and the surrogate model g as two separate sets of parameters, one for each
task, which however communicate through the optimization of the joint training
loss function which includes both f and g.

MTL has recently been used as a facilitator of XAl in specific settings. Some
works propose its use in the design of explainable recommendation systems,
either by producing accompanying textual explanations about the recommen-
dation [8] or by solving joint tensor factorization objectives of “user preference
modeling for recommendation” and “opinionated content modeling for explana-
tion” that involve tensors regarding the user, the items and the users’ preferences
on individual items’ features [37]. Another line of work, related to ours |24], con-
siders MTL for weakly-supervised concept-based explainability. In a fraud de-
tection setting, the authors employ distant supervision using domain knowledge
and a rule-based database in order to acquire imprecise (noisy) concept explain-
ability labels. They map rule descriptions present in the database that hold for
specific data instances to concepts which stem from a concept taxonomy (re-
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lated to the task). For instance: {Rule: Order contains risky product styles. —
Concepts: Suspicious Items}.

They also explore various training strategies for jointly training ML models
for two classification tasks, one about a prediction task and one based on the
concept labels which is essentially a multi-label classification task.

Following a rationale similar to that of [8l/24], in this work, we jointly solve a
prediction and an explainability task. However, our approach differs in the follow-
ing. First, instead of solving an additional supervised learning task such as text
generation [8] or classification of concept categories [24], we make use of a quan-
titative explainability-related metric as one of the two objectives, corresponding
to the task of explainablity, and we incorporate it into the loss function. Addi-
tionally, we focus on surrogate models that produce feature importance values
without the need for any additional labeled data (e.g., text reviews or inter-
pretable concepts). Our method aims at obtaining an accurate black-box model
while at the same time learning a better approximation of it through the surro-
gate model. On the contrary, in the baseline, currently used method, a surrogate
is obtained separately, after the training of the black-box is completed. Thus,
the adoption of MTL allows us to achieve this improved approximation as the
parameters of the black-box model are updated through the shared optimization
objective with respect to the performance of the explainability task which quan-
titatively measures how accurate the approximation is between the black-box
and the surrogate models.

2.3 Explainability through regularization

Some works consider the direction of explainability-based model optimization,
which we also address in this work. However, they use various types of regular-
izers in the optimization scheme of the black-box model. The method of Func-
tional Transparency for Structured Data (FTSD) [33] uses a non-differentiable
game-theoretic approach to regularize black-box models so that they become
more locally interpretable. It focuses on graph and time-series data, and thus
requires domain knowledge to define the neighborhood Ny. Self-Explaining Neu-
ral Networks (SENN) [31] generalize linear models, enriching them with complex
features and maintaining interpretability via gradient regularization and an auto-
encoder network. The Right for the Right Reasons (RRR) method |11] and some
similar works [4,[30,/36] use domain knowledge to decide on the features that are
used by the underlying model through a loss regularizer. This regularization
affects the model’s explanations. Regularization for tree-based approximation
was proposed in [12}/13]. Finally, Explanation-based Optimization (ExpO) [1]
uses a model-agnostic regularizer based on XAl metrics aiming at improving the
quality of local post-hoc explanations of the black-box model.

Our work is related to these methods on the aspect of explainability-based
optimization. However, different from these works, we utilize MTL, which allows
us to obtain a more interpretable black-box model as well as an explainer with-
out affecting the black-box architecture. Furthermore, our approach does not
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require access to domain knowledge, thus removing the need for costly feature
engineering and supplementary data.

3 MTL-inspired Explainability

In this section, we present our proposed framework that leverages MTL in or-
der to enhance explainability. Our approach addresses both a prediction and
an explainability task, each characterized by a distinct loss function. We use a
formulation in which these two losses are fused using a convex combination. The
goal is to jointly train a black-box model and a surrogate model that tries to
approximate the predictions of the former. We concurrently update the param-
eters of the two models using the combined loss objective that consists of the
two loss components. The first component represents the predictive training loss
of the black-box model, while the second one utilizes an explainability metric to
assess the quality of the surrogate model’s approximation.

3.1 Background

We consider a supervised learning setting [34], where the objective is to learn a
ML model f, namely a mapping from a vector space X to a target space ), with
feF X =), where F is the function family, and the target variable y € Y
can be either a real value (in regression problems) or a categorical value (in
classification problems). In ML settings, f is modeled as a DNN parameterized
by a set of parameters 6 (henceforth fp) that is trained with data D = {x;,y;}¥,
using a loss function Lgrp in the single-task scenario (e.g., cross-entropy for a
classification task - note that STL stands for Single-Task Loss).

In MTL, fy is learned with respect to multiple objectives which are most
commonly combined in a weighted linear sum:

Lyre =Y oiLsrr, (2)

Jj=1

where a; € R is the weight for the j-th task and m is the number of dis-
tinct tasks. In addition, the model is trained using data in the form of D =
{Xi, [Yity -« s Yijs - - - » Yim] 11y where y;; is the target for the i-th training exam-
ple and the j-th task.

In this work, we aim to generate explanations in the form of feature impor-
tances. Therefore, one of the objectives will be responsible for the explainability,
while the other will be responsible for the prediction task. A system that pro-
duces such explanations is denoted as e : X x F — &, where £ is the family of
possible explanations and is defined as £ = {g, € G | g4 : X — Y}. In this work,
G is the set of linear functions which are suitable for producing feature-based
explanations. Therefore, since the explanations will be based on the coefficients
of the learned linear function, we have that & = G. Moreover, ¢ denotes the
parameter set (i.e., the coefficients) of g,.
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3.2 Explainability metrics: Fidelity

Several metrics have been developed to objectively assess the quality of expla-
nations according to different criteria [3]. A common choice for the evaluation
of feature-based explanations is to estimate how accurately g, approximates the
behavior of fy for each target sample x [1,23]. This can be captured through the
squared difference:

PF(f5, 94, %) = (94(x) — fo(x))* (3)

which is referred to as Point Fidelity [6,/29]. The Global Fidelity is obtained as
the average of Point Fidelity values, across all IV samples,

N
F(fo,94) = Z [PF(f9, 9q:%)] - (4)

Fidelity is also used in cases that involve locality, where it is used to measure
how good g, is in modeling fp in a local neighborhood Ny of point x, which
consists of synthetically generated perturbations of x’s feature values |1}23|,

NE(fo.90:%) = 7 3 [(@) ~ £o))’] (5)

x XIENx

and is called Neighborhood Fidelity [1]. Similar to Point Fidelity, we can average
across all data points to get a ‘global’” Neighborhood Fidelity (GNF) measure
for the entire dataset:

N
GNF(fo,94) = Z INF(fo, g, %)] - (6)

3.3 Optimization Objective

As mentioned above, the intention is to compute the parameters of both the
black-box and the explainable models in a way that g,’s predictions are as close
as possible to fy’s ones, while also catering for the latter model’s predictive
performance.

Specifically, we want to train fg and g, by solving the following optimization
problem:

N
(f@agq) = argmin Z - ‘Cbase f9 X’L) yl) + (1 - CY) 'PF(fg,gq,Xi)] (7)
(fevgq)e]-'xs =

where fg, Jq are the acquired black-box and surrogate models respectively, after
the MTL training process. The function Lpesc(-) is a prediction loss function
(e.g., squared error loss for regression, cross-entropy loss for classification, etc.),
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PF is the point fidelity metric and o € (0,1) is a hyper-parameter that
controls the relative weight of the two loss functions (Fig. . The optimization
problem in @ can be solved using a gradient-based optimization algorithm.
The obtained surrogate model g, can be used as a global explanation method
regarding the obtained fg.

X = [xl'l' "'!xim]

Fig. 2. The proposed MTL framework. We represent a data point as a feature vector x;
with fo and gq being the black-box and explainable models respectively. Ground-truth
response is denoted by y;, while the black-box’s and the linear model’s predictions
are denoted by y; and y; respectively. Red dashed lines denote the back-propagated
gradients which allow the information exchange between the two tasks via the joint
optimization of the parameter sets 6 and q.

4 Experimental Results

This section provides results and insights from the experiments that we carried
out in order to assess the performance of the MTL-based framework and compare
it with state-of-the-art, single-task (STL) approaches. We experimented with
global and local explainability performance metrics. For simplicity, we considered
experiments on tabular datasets in which attribution is directly awarded on the
input features without further processing (e.g., formation of super-pixels for
imaging data [6]).

4.1 Model Architectures and Training

For the black-box fp, we experimented with Multi-Layer Perceptrons (MLPs).
We acquired the final architecture through a tuning process in which the number
of hidden layers as well as the number of neurons per layer were selected based on
the performance in a held-out validation set. We set ReL U as the activation
function of the hidden layers. For training, we used SGD with Adam [17] and
starting learning rate n = 1073, Additionally, we used the binary cross-entropy
loss for binary classification tasks, the logarithm of the hyperbolic cosine for
regression tasks and an early stopping criterion. For the MTL paradigm, a linear
model was used for g,.
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4.2 Datasets

We tested our models on a variety of regression and binary classification problems
from the UCI database [20], the California Housing datasetﬂ [27] and the Titanic
datasetﬂ [32]. Information about characteristics of these datasets can be found
in Table [I} For each dataset, we standardized numerical features to have mean
zero and variance one.

Table 1. Statistics of the datasets.

Dataset # samples|# features Type
(Red) Wine Quality |16 1,599 12 regression
Adult [26] 48,842 14 classification
California Housing [27] 20,640 8 regression
Titanic [32] 1,309 14 classification
AutoMPG |28] 398 7 regression

4.3 Evaluation measures

For the prediction tasks, we relied on traditional metrics such as Accuracy and
the Fy score for classification, and Mean Squared Error (MSE) for regression, in
order to measure the predictive performance of the models. For the explainability
task, we used the GF and GNF metrics, defined in and @, in the experiments
regarding global and local explainability respectively.

4.4 Global Explainability evaluation

Our method provides global explanations through the coefficients of g, in the
form of feature importance scores. We compared the models trained in the MTL
fashion to the ones obtained using separate, single-task training. For the single-
task scenario, we used a global surrogate model to approximate the single-task
trained model after the end of its training. For classification tasks, the compar-
ison in predictive performance is made based on Accuracy, while in regression
tasks, MSE is used. Table [3] shows the results of the experiments on the test
set of each dataset. For «, we experimented with step = 0.1 in the range (0, 1),
resulting in 9 values. Additionally, for the sake of completeness, we present pre-
diction test scores from a linear model baseline trained with STL in Table 2 in
order to justify the use of a non-linear black-box model.

The results show that training by using the MTL setting improves the GF
metric. Lower GF is better as it measures the difference of predictions. The
improvement holds for all values of «, but especially for the lower values of

! https://www.dcc.fc.up.pt/~1torgo/Regression/cal_housing.html
2 https://www.openml.org/search?type=data&sort=runs&id=40945&status=
active
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Table 2. Comparison of single-task trained MLP and linear models.

Metric Dataset Linear|Non-linear (MLP)
WINE (MSE) 0.598 0.541
AGCURACY/ ADULT (Acc.) | 0.824 0.850
MSE HOUSING (MSE) | 0.410 0.237
TITANIC (Acc.) | 0.774 0.785
AUTOMPG (MSE)| 0.176 0.098

Table 3. Comparison of a single-task trained MLP model (STL) with MTL train-
ing for various values of a based on the corresponding metric for the predictive task
performance and GF for the global explainability task. Results are shown across 5 runs.

Metrics ‘Datasets STL MTL - parameter o

- 01 [02]03|04({05]06]|07]|08]09
WINE (MSE) 0.541] 0.569 0.558]0.544[0.544|0.540|0.539(0.536|0.540/0.547
ADULT (Acc.) |0.850| 0.836 |0.839|0.842(0.844|0.848|0.849/0.850{0.849/0.850
HOUSING (MSE) |0.237| 0.403 |0.381]0.381|0.340|0.307|0.279|0.262|0.221|0.204

ACCURACY /

MSE TITANIC (Acc.) [0.785]0.764 |0.767|0.775|0.781|0.776|0.776|0.781|0.780(0.776
AUTOMPG (MSE)|[0.098| 0.153 |0.148|0.137|0.126/0.117]0.110{0.104|0.096|0.105

WINE 0.034| 0.001 {0.003|0.005|0.009|0.014]0.025{0.036{0.056|0.086

Global ADULT 0.033| 0.001 |0.004|0.007(0.010{0.013|0.016/0.018|0.021]0.021
Fidelity (GF) HOUSING 0.199]0.0006{0.002{0.0060.015|0.025]0.038{0.056{0.100{0.152
TITANIC 0.048| 0.001 |0.004/0.007|0.011]0.017|0.020(0.026|0.026|0.028

AUTOMPG 0.093| 0.001 {0.001{0.004|0.008|0.013]0.024{0.039{0.055|0.083

« it does so by a large margin, compared to STL. This is expected, since for
low values of «, the Fidelity loss component has a large coefficient, and the
optimization process is highly influenced by it. However, for low values of «,
we see that the predictive performance of fy decreases only by a small margin.
This effect diminishes as « takes on higher values, but so does the margin of
the decrease of GF, compared to the STL baseline. This is also anticipated as
a higher weight for the predictive loss allows it to affect training to a greater
extent and thus increase the predictive performance.

This accuracy-interpretability trade-off for the different values of « is de-
picted in Figure [3] for each dataset. The larger sized (circled) points represent
the Pareto optimal points (i.e., the optimal trade-offs between the two tasks).
The behavior is consistent for all the datasets where a monotonicity of GF is ob-
served, except for the Wine Quality dataset where the fidelity metric is slightly
worse than the single-task baseline for large values of a (e.g., 0.7,0.8,0.9). This
could be explained by the fact that we treat the target variable of the dataset
as continuous, thus solving a regression problem. It could be possible that since
the linear model cannot predict the target as accurately as the neural network
model, and since for large values of « the Fidelity component takes a small
weight in the loss function, the result of the approximation is less accurate.
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Fig. 3. Visualization of the predictivity-explainability trade-off. Prediction accuracy
vs. Global Fidelity results for different values of a on different datasets. Datasets: (a)
Adult, (b) California Housing (c) AutoMPG, (d) Titanic, (e) Wine Quality.
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4.5 Local Explainability evaluation

We additionally experimented with local explainability, in order to assess if the
acquired black-box fg could be better explained by local surrogate models. We
used a post-hoc local explainability method and specifically, LIME [6]. We eval-
uated the explanations produced by LIME based on the acquired black-box fe
using the GNF metric. We again compared a single-task trained black-box model
against black-box models trained with MTL (« € (0, 1), step = 0.1).

After the training procedure of fg was completed, we used LIME to produce
local explanations for each instance in the test set. For the GNF metric, we
generated neighbors for N, using perturbations stemmed from N (x, u1, 02) with
p=0,0% = 0.1 and used 10 neighbors (|Nx| = 10) for the evaluation.

Table [4] contains the results of the experiments for all datasets.

Table 4. Comparison of a single-task trained (STL) MLP model with MTL training
for various values of a based on the corresponding metric for the predictive task perfor-
mance and GNF for the local explainability task. Because calculation of GNF is slow
due to a separate training of a surrogate model for each instance, results are shown for
a single run. In addition, for the ADULT and HOUSING datasets, 500 test points were
used.

Metrics {Datasets STL MTL - parameter «
- 01102]03|04|05|06]07]08]|0.9

WINE (MSE) 0.541(0.584]0.557|0.545|0.537]0.551|0.529|0.518]0.509{0.540
AGCURACY/ ADULT (Acc.) (0.850(0.834(0.838(0.842(0.843|0.845|0.850(0.852|0.851|0.852
MSE HOUSING (MSE) [0.237]0.403]0.391]0.355/0.334/0.348|0.264/0.251{0.234/0.195
TITANIC (Acc.) |0.785|0.778|0.774(0.774|0.770|0.774|0.767|0.782|0.774|0.771
AUTOMPG (MSE)|0.098(0.156(0.141]0.135|0.123|0.118]0.113/0.103|0.104|0.112
WINE 0.019(0.001{0.002|0.003|0.008{0.008|0.014|0.031{0.018{0.029
Global ADULT 0.084(0.048{0.047]0.057|0.061]0.067|0.078/0.074/0.051|0.083
Neighborhood |HOUSING 1.260{0.003|0.052(0.085|0.134|0.369|0.230{0.937|0.242|0.616
Fidelity (GNF)|TITANIC 0.131{0.048{0.120]0.140|0.164]0.119|0.009|0.153]0.225|0.105
AUTOMPG 0.111{0.027{0.039|0.016|0.022{0.035|0.033|0.041{0.047|0.126

Results show that GNF is also improved when MTL is employed. This shows
that the acquired black-box model fy which was trained with regard to having
similar predictions to those of a linear model g, can also be more accurately
approximated by local linear explanations. However, local explainability results
seems to be independent regarding the value of a which could be explained by
the fact that the objective does not involve a local explainability optimiza-
tion component. A possible solution would be the incorporation of a component
similar to |1] that will also account for local explainability performance during
the training process.

4.6 Lessons Learned from the experiments

Overall, our results showcase that using the proposed MTL training procedure al-
lows the surrogate linear model g, to better approximate the black-box model fj,
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compared to the standard baseline of training them sequentially and separately.
We also appose Table [5| which contains the R? score between the predictions of
fo and gq in the single-task and multi-task settings on the ADULT dataset.

Table 5. R? score between the predictions of the black-box and the surrogate models
on ADULT, in single-task and multi-task settings.

Approach|STL|a = 0.1|a = 0.2|a = 0.3|a = 0.4|a = 0.5|a = 0.6|a = 0.7|a = 0.8|a = 0.9
R? 0.57| 0.97 | 0.93 0.89 0.85 0.83 0.78 0.77 0.72 0.73

The following key points can be observed from our experiments:

e The produced global and local explanations are more accurate than the ex-
planations produced by the single-task trained black-box model. This means
that f@ can be more accurately approximated even from local explainability
methods compared to a black-box trained with STL.

e For global explainability, we observe a high improvement in the Global Fi-
delity metric for low values of a and a slight decrease in the predictive
performance of f@, compared to the baseline of the single-task training. The
decrease diminishes as « gets larger and even disappears on certain datasets.

e For local explainability, we also observe an improvement on the Fidelity
of the local explanations produced by LIME [6], compared to the Fidelity
of the same explanations when the black-box neural network is trained in a
traditional single-task fashion, but the improvement seems to be independent
of the value of a. This could be explained by the fact that the optimization
objective manages to make fg more ‘interpretable’ but does not account for
local explainability performance per se.

5 Conclusions

In this work, we propose and evaluate a novel Multi-Task Learning framework in
which we train a black-box neural network model together with a surrogate linear
model in order to obtain Feature Attribution explanations. We use a convex com-
bination of two loss components. The first component assesses the black-box’s
predictive performance in terms of a training loss function, while the second one
evaluates the surrogate’s approximation quality through the fidelity metric. We
demonstrate that this paradigm improves the quality of the surrogate model’s
approximation to the black-box, thus resulting in more accurate (fidelity-wise)
global explanations on unseen test data compared to the standard used method,
which is to train the surrogate model separately from, rather than concurrently
with the black-box one. Finally, we also showcase the effectiveness of the frame-
work on a local explainability setting where again, more accurate (fidelity-wise)
local explanations are produced.

Future work could generalize the current setting through more explainabil-
ity metrics such as faithfulness, complexity [9] and stability [1] to the training



Exploring Multi-Task Learning for Explainability 15

procedure. We could also consider other forms of optimization like constrained
optimization, namely minimize the prediction accuracy subject to a constraint
on an explainability metric. The objective would be to optimize the predictive
training loss while enforcing a constraint on the value taken by the fidelity metric
in order to keep it below a desired threshold.

Lastly, an area we would like to study is related to user-perception based
explainability metrics. In the current work, we use a quantitative metric for ex-
plainability, however, the real perceived experience on the end-user is not clear.
As explainability of ML models touches upon the end-users more than any other
ML model property, the grand objective would be to translate metrics such as
fidelity to new ones that are closer to the user perception of what explainabil-
ity means to them and how it is perceived, and at the same time continue to
follow a systematic optimization approach, similar to what we describe in this
paper. This of course necessitates that the new metrics are differentiable or can
be approximated by differentiable functions, so that they can be incorporated
in a Deep Learning-based framework. Learning this mapping from the set of
quantitative explainability metrics such as fidelity, faithfulness, complexity, to
perceived user experience is a challenging goal which calls for ML methods on
crowdsourced datasets collected from human feedback that we intend to pursue
in the future.
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